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ABSTRACT 

We present an introduction to the use of a refractive null lens for testing grazing incidence x-ray mirrors for 
the Constellation-X mission.  The singular role of mirror mounting in glass shell mirror metrology is also 
touched upon.  We compare results achieved to date with mission requirements along with some of the 
unique properties of the null lens.  Additionally, uses beyond mirror metrology are briefly discussed.  
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1.  INTRODUCTION 
The Constellation-X mission1 is a spectroscopic x-ray mission to be flown in 2016 as a compliment to the 
current Chandra x-ray observatory.  The mission concept consists of a single spacecraft with four 1.3m, 
~15 arcsec HPD soft x-ray telescopes (SXT) with 163 nested, azimuthally segmented shells of grazing 
incidence mirrors. 
 
Metrology of such x-ray telescope mirrors has been arduous.  Although they are hyperboloids and 
paraboloids, the usual methods for testing these conic sections prove impractical because the annular 
sections are so far off axis.  Instead, large numbers of line profiles parallel and perpendicular to the 
telescope axis have been measured and stitched together.  Such an approach becomes unreliable for thin 
shell (foil or membrane) mirrors where vibration and self-weight distortion become an appreciable fraction 
of the metrology uncertainty.  Under such circumstances, only full surface metrology will allow one to 
deconvolve the various terms and determine the shape of the mirror in question.  It is with this problem in 
mind that we designed a cylindrical null lens, discussed previously.2  We have since designed and built a 
lens housing and aligned the system3 and the system is now in regular use.  The system is shown as used in 
Figure 1.  We will briefly review some of the salient features of the design germane to the present 
discussion and then discuss results obtained to date. 
 
1.1  Refractive null lens and mirror metrology requirements 
 
The null lens provides certain information necessary for the quality assurance for the segmented x-ray 
telescope.  These data must be capable of being measured to a fraction of the budgeted error for the mirror 
segment prescriptions.   The quantities obtainable by by the null lens are shown in Table 1. 
 
In addition to the quantities listed in Table 1, the null lens is of great utility in measuring the gravity 
distortions.  Terrestrial metrology on the 500:1 aspect ratio mirrors will inevitably be influenced by gravity 
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distortions.  Only a full surface metrology technique unambiguously measures the surface deformations 
allowing the testing of mounts to minimize the gravity distortion. 
 

 
 
Figure 1:  Null lens measuring mirror segment.  Note Cantor tree mirror mount at left (see text), cylindrical null lens at 

the right-center and strobe Fizeau at far right foreground. 
 
Table 1:  Terms from the Constellation-X error budget4,5 derivable from the null lens measurements and determined 

uncertainties as of this writing. 
Term Error Allocation Metrology 

Uncertainty  
Notes 

Roundness 5 µm RMS 0.06 µm RMS 1 

∆∆R 0.5 µm RMS 0.04 µm RMS 2 

Average Axial Sag 0.31 µm P-V 0.004 µm P-V 2 

Axial Sag Deviation 0.1 µm P-V 0.08 µm P-V 2 

Axial Slope irregularity 2.4 arcsec RMS 0.05 arcsec RMS 2 

Circumferential slope error 1.6 arcsec RMS 
(shell dependent) 

0.06 arcsec RMS 2 

Notes: 
1.  Estimated from optical model 
2.  Measured 
 

1.2  Characteristics of the cylindrical refractive null lens 
 
We have discussed the design of the lens in a previous publication and the interested reader is referred to 
Ref. 2 for the details.  We note that a single refractive cylindrical null lens will measure all the mirrors in 
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the telescope despite the plethora of cone angles involved.  This makes the refractive solution more than an 
order of magnitude less expensive than alternative approaches such as diffractive nulls.  This advantage is 
also a drawback since the cone angle is not then determined uniquely.  This disadvantage can be overcome 
(discussed at the end of the paper).  An additional advantage making the refractive null solution attractive is 
the time savings realized in calibrating a single null corrector rather than hundreds. 
 
Since our previous report on the design, the null lens has been fabricated; a housing designed and built; lens 
mounted and aligned;3 and it is now in regular use.  The present lens has a field of view of only 36°, but a 
second lens is being fabricated with a field a view greater than 60°.  This larger field of view will allow 
either inner or outer mirror segments to be measured in a single exposure. 
 
The lens provides quality assurance and feedback for the glass forming (slumping) process.6,7  It is intended 
to cover the spatial period region from 200 mm to about 1 mm. 
 
The null lens exhibits an anamorphic magnification of the part under test.  Parallel to the lens axis, the 
magnification is unity whereas perpendicular to it, the magnification is a function of the radius of the part 
under test.  For the data presented here the ratio of azimuthal to axial magnification is very close to ⅓.  The 
anamorphic magnification also results in the sampling of the mirror being anamorphic as well.  Since the 
radius is not determined by the measurement itself, it is most accurate to express the surface maps axially in 
terms of mm but azimuthally in terms of angle.  We have not corrected the surface maps in this paper for 
this anamorphic magnification. 
 
1.3  The role of mounting for glass shell mirrors 
 
The self-weight distortions and vibrations complicate the mirror shape determination.  The low stiffness of 
the glass membrane mirrors results in large amplitude, low-frequency vibrations (<50 Hz).  This was 
discussed in detail in a previous publication.8  Given the self-weight distortion and vibrations, great care 
must be taken in the design of the mount used for metrology.  First, it must support the mirror to minimize 
gravity distortions.  Second, it needs to suppress (or control the shape of) the vibrations.  Finally, it must 
allow for precision manipulation of the mirror to align to the gravity field and null lens.  And it should 
accomplish these without over constraining the mirror.  The properties of an ideal mount are summarized in 
Table 2.[after Ref 8] 
 
Table 2:  Characteristics of an ideal metrology fixture. 

Mount Characteristic 
Low self-weight gravity distortion 

No twist of the part under test1 

Part invertible 
Repeatable positioning 

Minimal obscuration of aperture 
Minimal obstruction of access to surface under test 

Provides fiducials 
Minimizes vibration2 

 1.  More generally, doesn't over constrain the mirror under test 
 2.  More generally, minimizes effects of vibration on the measurement 
 
To solve the Herculean task of the mount design we took our inspiration from kinematic design.  
Accounting for the degrees of freedom of the mirror, we ended up with a system somewhat akin to a two-
dimensional Whiffle tree, which we have nicknamed a Cantor tree (given its resemblance to the Cantor set 
when sketched - see Figure 2).  It consists of bearings and fulcrums along the bottom and bearings only 
along the top. The bearings accommodate the possibility of locally varying slopes along the perimeter of 
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Figure 2:  Schematic of Cantor tree kinematic mount  
  holding a mirror.  Positions marked with C are  
 bearings that rotate in and out of the plane of  
 the paper.  The bottom two branches also rock  
 in the plane of the paper as indicated.  The g  
 indicates the assumed gravity vector for the  
 design.  Note that the part can be inverted and  
 remounted. Top contact points are guided  
 whereas one contact point is fixed on the  
 bottom while the rest are guided.  
 
 
 
the mirror without distorting the mirror.  One of 
the bottom points of contact is fixed and all the top 
points are guided.  It is shown schematically in 
Figure 2 for four points of attachment at the top 
and bottom. (A realization with two points of 
attachment on the top and bottom is seen in the 
Fig. 1.)  Note that it can be reduced to a three-point 
kinematic mount for precise manipulation of the 
mirror. 
 
The resemblance to a Whiffle tree ceases when the 

part-mount combination dynamic behavior is considered.  The contact points and branches are optimized to 
tune the frequency of vibration and the mode shapes of the mirror while simultaneously minimizing the 
gravity distortion. 
 
For the purpose of metrology, the mode shape is chosen so that the vibration will have a minimum impact 
on the metrology results.  (We have found that we cannot completely suppress the mirror vibrations without 
over constraining the mirror and thus distorting it; so the mirror is allowed to vibrate during measurement.)  
For the mirror segments we are measuring, this means the ideal modes are as close to purely azimuthal as 
possible. 
 
We note that the general Cantor tree concept can be optimized differently than we have chosen to do here.  
For instance, one could simultaneously minimize of both the static and dynamic deflections. 
 
In addition to vibrational mode shaping, we also employ the usual precautions to minimize the vibrational 
amplitudes resulting from environmental influences by using a high quality air table, etc.  We have found, 
however, that this approach is insufficient (with any reasonable effort) for vibrations.  With our thin mirrors 
the mirror vibrational amplitudes are unacceptably large compared with our desired metrology precision 
even for the small vibrational source amplitudes that transmit through the air table. 

 
2.  RESULTS AND DISCUSSION 

 
Given the variable nature of the glass shell mirrors as discussed above, we average over the mirror 
vibrations by employed a 250 mm aperture 4D Technologies FizCam®1500 to strobe the part 
interferometrically thereby elucidating the static (unvibrating) shape.  A large number (typically > 100) of 
individual interferograms are taken at successive times (67 msec between frames with a 0.2 msec 
exposure).  The frames are averaged to yield the vibration-free shape.  Figure 3 shows the shape of the first 
mode of vibration for the mirror in the mount captured by the refractive null-FizCam combination. 
 
From the resultant unvibrating (average) shapes, obtained in carefully chosen orientations relative to 
gravity, and with comparison to FEM models, we can extract the shapes free of gravity distortions.  Thus, 
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the as-formed shape can be determined for feedback to the forming process.  This work is in its early stages 
as of this writing. 
 

Figure 3:  This figure illustrates the shape of the  
 first vibrational mode of the part in the  
 Cantor tree mount. (This figure was  
 generated by taking a single surface map 
 and subtracting the average of all 100 to  
 bring out the mode shape.)  The P-V is 60 
 nm. 
 
 
 
Other possible uses of the null-lens-strobe 
interferometer combination outside the standard 
metrology for the Constellation-X mission are 
numerous.  For instance, the null lens can be 
employed to quantify the distortions introduced by 
the telescope housing to optimize the opto-
mechanical design.  It can also be employed to 
study the vibrational characteristics of the mirrors 
prior to pre-launch vibration and acoustic testing. 

 

 
   (a)     (b) 

 
   (c)      (d) 
 
Figure 4:  Misalignment aberrations for a cylindrical (or conical) system [normalized]. (a) defocus, (b) twist (clocking 

of lens and part axes) (c) coma ( 1D coma from displacement of axes) (d) conical  (tip of axes yielding 
defocus varying as a function of axial position). 
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The cylindrical null lens measurements, however, are not absolute.  Figure 4(a)-(d) illustrate the aberrations 
resultant from misalignments between the mirror under test and the lens.  As any of these shapes are also 
conceivable in a mirror as fabricated, measurements in different lens-part orientations should be made to 
determine the source of the observed error (mirror or misalignment).  A possibly better method of assuring 
that such a shape is in the mirror is to move the lens a known amount between two successive 
measurements, which introduces a known amount of aberration.  Several such moves allow one to 
determine if the shape is in the part or merely a misalignment.  One part error that cannot be determined by 
this method is shown in Figure 4(d) and is called conical aberration.  This is an error in the cone angle of 
the part (assuming the lens is oriented exactly at the proper cone angle).  This error in mirror fabrication 
can always be accommodated (or at least its first-order component) by tilting the lens relative to the 
interferometer.  Although this characteristic of the null lens allows any cone angle to be measured, it does 
not tell you what that cone angle is (see the extension discussion below for a way out of this conundrum). 
 
Figure 5 shows a typical result for the average figure measurement.  This represents the vibration-free 
figure after the removal of the tilted cylindrical wavefront (conical wavefront).  We averaged 225 
individual measurements to obtain this result.  The large number assures a good sampling of the random (in 
amplitude, time and frequency content) environmental sources of vibration perturbing any individual 
realization of the part shape in time. 
 
Figure 6 shows the difference between two such measurements (with 75 individual surface maps making up 
each average) indicating the excellent repeatability obtained by the averaging process.  Most of the error is 
due to residual air movement during the time between measurements (about 2 minutes here). 

 
3.  SUMMARY AND CONCLUSIONS 

 
A refractive null corrector has been designed and fabricated that allows large area metrology for grazing 
incidence x-ray mirrors.  This enables one to examine the dynamics of the thin glass mirrors, which, in 
turn, allows one to design and test mounting structures with the small amplitude displacements critical for 
surviving launch.  Additionally, the static shapes can be determined from which the on-orbit shapes may be 
derived. 
 
The precision of the system is currently limited by mirror fixturing.  Since the fabrication technology for 
cylindrical optics of this size is mature, the system is scalable in both azimuthal and axial dimensions so 
much larger mirror segments could be measured by this method. 
 
In conclusion, the addition of a refractive null corrector is a powerful weapon in the arsenal of metrology 
needed for the Constellation-X mission. 

 
4.  EXTENSION OF THE NULL LENS TO THE MEASUREMENT OF OTHER ERROR 

BUDGET TERMS 
 
4.1 Cone angle measurement 
 
The null lens can accommodate a wide range of cone angles.  Although this allows any cone angle in the 
telescope to be accommodated, it does not tell you what that cone angle is.  There is a way out of this 
corner.  This is merely the addition of an angular fiducial to the lens housing.  A convenient angular 
fiducial with the requisite fidelity is a variable line space grating or CGH.  This can be a small strip glued 
to the housing.   
 
Then one only need determine the zero of the angular scale.  This is readily done by obtaining a cat-eye 
interferogram from a very good flat and noting the position of the CGH return in the field of view. 
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Figure 5:  Typical data obtained from the cylindrical 
null lens and strobe Fizeau interferometer 
combination.  Note that the axial sag of the 
part is intentional.  Drop outs in the data are 
local high slope regions left from the 
forming process, which would primarily 
contribute, to a loss of effective area in the 
telescope. 

 

Figure 6:  Difference plot between two subsequent 
averages for 100% of the null lens clear 
aperture.  RMS error is 5.9 nm.  Note the 
dominant residual seen is probably due to air 
currents. 
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4.2  Average radius measurement 
 
The average radius of the part can be measured akin to radius measurements with a radius slide for spherical optics.  It 
behooves one to start the measurement with the normal full surface null measurement.  This assures that the lens is 
centered on the part.  Then the null lens is slid forward on the slide until it is focused on the centerline of the part in a 
cat's-eye interferogram.  The distance the lens travels along the slide is the radius of the part. 
 
The measurement is very sensitive to side-to-side travel (as in a standard spherical optics radius measurement).  Unlike 
in a standard radius measurement though, the up-and-down motion of the stage is not as critical.  (The sensitivity is 
proportional to the half-cone angle of the part under test.)  Clocking of the lens (twist of the rail) is a source of error too.  
It can be tracked by examining the axial sag, which should be identical at the centerline in both the null and cat's-eye 
measurements. 
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